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Lemma 0.1 (for Exercise 1a). Let G be a finite group. Then G has a maximal proper normal
subgroup.

Proof. Since G is finite, its power set is finite, so the collection of normal subgroups is finite.
In particular, the subset of N given by

{|H| : H / G,H 6= G}

is finite, so it has a maximum, call it m. Then there exists a normal subgroup H so that
|H| = m. We claim that H is a maximal proper normal subgroup. Let K be a proper normal
subgroup of G such that H ⊂ K, so m = |H| ≤ |K|. Then by maximality of m, we have
|K| = m. Thus K does not contain H properly, so H is a maximal normal subgroup.

Lemma 0.2 (just for fun). Every group has a maximal proper normal subgroup.

Proof. The set of proper normal subgroups of G is partial ordered by ⊂, and every totally
ordered subset has an upper bound, namely G. Then by Zorn’s Lemma, this set has a
maximal element.

Lemma 0.3 (for Exercise 1a). Let f : G→ G′ be a group homomorphism and H a subgroup
of G. Then f(H) is a subgroup of G′.

Proof. Let e, e′ be the identites for G,G′ respectively. Suppose x′, y′ ∈ f(H). Then there
exist x, y ∈ H such that f(x) = x′, f(y) = y′, so xy ∈ H so f(xy) = f(x)f(y) = x′y′ ∈ f(H).
Thus f(H) is closed. We know that f(e) = e′, so e′ ∈ f(H). If x′ ∈ f(H), then there exists
x ∈ H so that f(x) = x′, so x−1 ∈ H, so f(x−1) = f(x)−1 ∈ f(H), so f(H) is closed under
inverses. Associativity in f(H) follows from associativity in G′.

Lemma 0.4 (for Exercise 1a). Let f : G→ G′ be a surjective group homomorphism and N
a normal subgroup of G. Then f(N) is a normal subgroup of G′.

Proof. We know that f(N) is a subgroup by the above. Let x′ ∈ G′. Then since f is
surjective, there exists x ∈ G such that f(x) = x′. Then we have

x′f(N) = f(x)f(N) = f(xN) = f(Nx) = f(N)f(x) = f(N)x′

so f(N) is normal.
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Lemma 0.5 (for Exercise 1a). Let G be a group and H a normal subgroup. Let π : G→ G/H
be the projection g 7→ gH. If N is a proper normal subgroup of G such that H ⊂ N , then
π(N) is a proper normal subgroup of G/H.

Proof. Let N be a proper normal subgroup of G with H ⊂ N . Since π is surjective, we know
that π(N) is a normal subgroup of G/H, so we just need to show that it is proper.

Suppose that π(N) = G/H. Then N contains an element from each coset of H, that
is, for a coset aH we have b ∈ N such that bH = aH. Then N contains bH, because
H ⊂ N . Thus N contains all cosets of H, so N contains G, so N = G. This contradicts the
assumption that N is a proper subgroup of G, so we must conclude that π(N) 6= G/H.

Lemma 0.6 (for Exercise 1a). Let G be a group and H a normal subgroup. Then G/H is
simple if and only if H is maximal.

Proof. Assume that H is maximal. Suppose G/H is not simple, that is, there exists a proper,
nontrivial normal subgroup K / G/H. Let π : G → G/H be the projection g 7→ gH. Then
since π is surjective, π−1(K) is a normal subgroup of G containing H. Since K is nontrivial,
it contains a non-identity element kH where k 6∈ H. Then k ∈ π−1(K) but k 6∈ H, so H is a
proper subset of π−1(K). This contradicts the fact that H is maximal, so we conclude that
G/H is simple.

Now suppose that G/H is simple. Suppose that H is not maximal, that is, there is a
proper normal subgroup N with H ⊂ N . Then π(N) is a proper normal subgroup of G/H
by Lemma 0.5, which contradicts G/H being simple. Thus H is maximal.

Proposition 0.7 (Exercise 1a). Every finite group G has a composition series, that is, a
normal tower ending in the trivial group such that every quotient of adjacent groups Gi =
Gi+1 is simple.

Proof. If G is simple, then

G ⊃ {e}

is a normal tower with simple quotients. If G is not simple, then let G1 be a maximal normal
proper subgroup. If G1 is simple, then

G ⊃ G1 ⊃ {e}

is a normal tower with simple quotients. (G/G1 is simple becauseG1 is maximal.) Continuing
in this manner, if Gi is not simple, we find a proper maximal normal subgroup Gi+1. We get
normal tower with simple quotients, with |Gi+1| ≤ |Gi|.

G ⊃ G1 ⊃ G2 ⊃ . . . ⊃ Gk ⊃ . . . ⊃ {e}

If at any point Gk is simple, we have a composition series

G ⊃ G1 ⊃ . . . ⊃ Gk ⊃ {e}

Since the order decreases at each step, after at most |G| steps, we reach a subgroup Gn with
order 1. Thus

G ⊃ G1 ⊃ G2 ⊃ . . . ⊃ Gn = {e}

is a composition series for G.
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Proposition 0.8 (Exercise 1a). Not every infinite group has a composition series.

Proof. We claim that the abelian group (Z,+) has no composition series. Note that every
subgroup is cyclic, and every subgroup except {0} is nZ for some n ∈ N. Suppose there is a
normal tower

Z = G ⊃ G1 ⊃ G2 ⊃ . . . ⊃ Gn−1 ⊃ Gn = {0}

where each quotient Gi/Gi+1 is simple. Then Gn−1/Gn = Gn−1 is simple. But Gn−1 contains
{0} as a proper subgroup, so it contains some k ∈ Z, so 〈k〉 is a subgroup of Gn−1. If it
is a proper subgroup, then Gn−1 is not simple and we already obtain a contradiction. If
〈k〉 = Gn−1, then we have 〈2k〉 ⊂ Gn−1 as a proper subgroup. Thus Gn−1 is not simple, so
no such tower exists.

Lemma 0.9 (for Exercise 1b). Let G be a group with normal subgroup H such that G/H is
abelian. Then [G,G] ⊂ H.

Proof. We need to show that for a, b ∈ G, the commutator aba−1b−1 ∈ H. Let a, b ∈ G.
Since G/H is abelian,

abH = aHbH = bHaH = baH =⇒ ab(ba)−1 = aba−1b−1 ∈ H

Lemma 0.10 (for Exercise 1b). Let G be group and H be a subgroup. Then [H,H] ⊂ [G,G].

Proof. [G,G] is the subgroup generated by commutators aba−1b−1 with a, b ∈ G. H is the
subgroup generated by commutators cdc−1d−1 with c, d ∈ H. Clearly, every commutator for
H is a commutator for G, so the generating set for [H,H] is a subset of the generating set
for [G,G]. Thus [H,H] ⊂ [G,G].

Proposition 0.11 (Exercise 1b). Let G be a group and G(1) = [G,G] be the commutator
group. Set G(i+1) = [G(i), G(i)]. Then G is solvable if and only if G(n) = {e} for some n.

Proof. Suppose that G(n) = {e} for some n. By Exercise 3 from the last homework, [G,G]
is normal in G, and G/[G,G] is abelian, so we have an abelian normal tower

G ⊃ G(1) ⊃ G(2) ⊃ . . . ⊃ G(n) = {e}

Hence G is solvable. Now suppose that G is solvable, that is, there is a normal abelian tower

G = G0 ⊃ G1 ⊃ . . . ⊃ Gn = {e}

For each i, Gi+1 is a normal in Gi with Gi/Gi+1 abelian, so by Lemma 0.9, [Gi, Gi] ⊂ Gi+1.
Also, G(1) = [G,G] ⊂ G1. Now we induct on i, assuming that G(k) ⊂ Gk for k = 1, . . . i.
Then

G(i+1) = [G(i), G(i)] ⊂ [Gi, Gi] ⊂ Gi+1

This completes the induction, so G(i) ⊂ Gi for all i. In particular, G(n) ⊂ Gn = {e} so
G(n) = {e}.
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Proposition 0.12 (Exercise 2). Let G be a p-group and N be a normal subgroup of order
p. Then N ⊂ Z(G).

Proof. Let G act on N by conjugation. (This action is well-defined because N is normal.)
Since G is a p-group and p divides |N |, the number of fixed points of this action is congruent
to 0 mod p (by Lemma 6.3c in Lang). Since N is a subgroup, it contains e, and e is a fixed
point of this action. Hence there are at least p fixed points of this action (geg−1 = gg−1 = e).
But |N | = p so all of N is fixed by conjugation from G. Hence for x ∈ N, g ∈ G we have
gxg−1 = x =⇒ gx = xg. Thus N ⊂ Z(G).

Proposition 0.13 (Exercise 12a). Let G be a group and N,H subgroups with N normal.
Let ψ : G→ Aut(G) be x 7→ ψx where ψx : G→ G is given by g 7→ gxg−1. Then ψ induces
a homomorphism f : H → Aut(N) given by h 7→ ψh|N .

Proof. First we need to show that ψh|N is an automorphism of N . For x ∈ N , ψh|N(x) =
hxh−1 ∈ N since N is normal, so we confirm that ψh|N does map into N . It is a homomor-
phism because for x, y ∈ N , we have

ψh|N(xy) = hxyh−1 = hxh−1hxh−1 = ψh|N(x)ψh|N(y)

Now we need to show that f is a homomorphism. Let g, h ∈ H, x, y ∈ N . Then

f(gh)(x) = ψgh|N(x) = ghx(gh)−1 = ghxh−1g−1

= gψh|N(x)g−1 = ψg|N ◦ ψh|N(x) = f(g) ◦ f(h)(x)

Thus f(gh) = f(g) ◦ f(h), so f is a homomorphism.

Proposition 0.14 (Exercise 12b). Let G be a group with H,N subgroups and N normal,
such that H ∩ N = {e}. The map φ : H × N → HN given by (x, y) 7→ xy is a bijection.
Furthermore, φ is an isomorphism if and only if f : H → Aut(G) given by x 7→ ψx|N is
trivial, that is, f(x) = IdN for x ∈ H.

Proof. We show that φ is surjective. If xy ∈ HN , then (x, y) ∈ H ×N so φ(x, y) = xy.
Now we show that φ is injective. Suppose that x,w ∈ H, y, z ∈ N such that φ(x, y) =

φ(w, z), that is, xy = wz. Then w−1x = zy−1. Since w−1x ∈ H and zy−1 ∈ K and
H ∩K = {e}, we get w−1x = zy−1 = e, so w = x and y = z. Hence (x, y) = (w, z) so φ is
injective.

Now we show the last claim. Suppose that f is trivial, that is, f(x) = IdN for x ∈ H.
Then ψx|N = IdN , so for y ∈ N , we have xyx−1 = y =⇒ xy = yx. Then for x,w ∈ H, y, z ∈
H, we have

φ((x, y)(w, z)) = φ(xw, yz) = xwyz = xywz = φ(x, y)φ(w, z)

thus φ is a bijective homomorphism, so it is an isomorphism.
Now suppose that φ is an isomorphism. Then for x,w ∈ H, y, z ∈ N we have

xwyz = φ(xw, yz) = φ((x, y)(w, z)) = φ(x, y)φ(w, z) = xywz

thsun yw = wy for all w ∈ H, y ∈ N . Thus

f(w)(y) = ψw|N(y) = wyw−1 = yww−1 = y

so f(w) = IdN for w ∈ H.
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Proposition 0.15 (Exercise 12c). Let N,H be groups and ψ : H → Aut(N) be a homomor-
phism. Let G = {(x, h) : x ∈ N, h ∈ H} and define a binary operation on G by

(x, f)(y, h) = (xψfy, fh)

where we use the notation ψf to mean ψ(f). Then G is a group under this operation.
Furthermore, if we identify N with the set of elements (x, eH) and H with the elements
(eN , h) then G is a semidirect product of N and H.

Proof. Let eH , eN be the respective identities of H,N . Then for x ∈ N, h ∈ H,

(eN , eH)(x, h) = (eNψeNx, eHh) = (x, h)

(x, h)(eN , eH) = (xψheN , heH) = (xeN , h) = (x, h)

so (eH , eN) is an identity for G. Closure is immediate from the definition, as xψfy ∈ N . G
is closed under inverses, as (x, h) has the inverse (ψh−1x−1, h−1).

(x, h)(ψh−1x−1, h−1) = (xψhψh−1x−1, hh−1) = (xx−1, hh−1) = (eN , eH)

Finally, we need to show that associativity holds. Let (x, f), (y, g), (z, h) ∈ G.

(x, f) · [(y, g) · (z, h)] = (x, f) · (y(ψgz), gh)

= (xψf (y(ψgz)), fgh)

= (x(ψfy)ψf (ψgz)), fgh)

= (x(ψfy)(ψfgz), fgh)

= (x(ψfy), fg) · (z, h)

= [(x, f) · (y, g)] · (z, h)

So we have associativity. Thus G is a group. Now we identify N with {(x, eH) : x ∈ N} ⊂ G
and H with {(eN , h) : h ∈ H} ⊂ G. we can see that H ∩N = {(eN , eH)} and G = NH, as
(x, h) ∈ G can be written as

(x, eH)(eN , h) = (xψ(eH)eN , eHh) = (x, h)

Thus G is the semidirect product of N and H.

Proposition 0.16 (Exercise 14a). Let G be a finite group and let N be a normal subgroup
such that N and G/N have relatively prime orders. Let H be a subgroup of G with the same
order as G/N . Then G = HN .

Proof. First, we claim that H ∩ N = {e}. Suppose that x 6= e and x ∈ H ∩ N . Then
〈x〉 ⊂ H ∩ N , so |x| divides |H| and |N |. Since x 6= e we know that |x| ≥ 2, so this is a
contradiction, since |H| and |N | are relatively prime. Thus the claim is proved.

By the second isomorphism theorem, HN is a subgroup of G, and

(HN)/N ∼= H/(H ∩N) ∼= H/{e} ∼= H

Then by Lagrange’s Theorem we have

|HN |/|N | = |H| =⇒ |HN | = |H||N | = |G/N ||N | = |G|

Thus HN is a subgroup of G with the same order as G, so HN = G.
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Proposition 0.17 (Exercise 14b). Let G be a finite group and let N be a normal subgroup
so that N and G/N have relatively prime orders. Let φ : G→ G be an automorphism. Then
φ(N) = N .

Proof. Suppose that φ(N) 6= N . Then there exists x ∈ N such that φ(x) 6∈ N . We will
reach a contradiction by showing that |φ(x)N | divides both |N | and |G/N |.

Since φ(N) is a subgroup, x 6= e. We know that |x| 6= 1 and |x| divides |N |, as 〈x〉 is a
subgroup of N . Since φ(x) 6∈ N , the coset φ(x)N is not equal to N , so |φ(x)N | 6= 1. (Note:
|φ(x)N | is the order of the coset φ(x)N in G/N .) Using the fact that φ is a homomorphism,

(φ(x)N)|x| = φ(x)|x|N = φ(x|x|)N = φ(e)N = eN = N

This calculation says that |φ(x)N | divides |x|, so it divides |N |. Since 〈φ(x)N〉 is a cyclic
subgroup of G/N , its order also divides |G/N |. Thus |φ(x)N | divides |N | and |G/N |, which
is a contradiction since these orders are relatively prime by hypothesis. So we reject our
assumption and conclude that φ(N) = N .

Note on notation: For a group G acting on a set S, we use the notation Gs for the
stabilizer (isotropy) subgroup of G and G.s for the orbit of s.

Lemma 0.18 (for Exercise 15). Let G be a group acting on a set S. Then for g ∈ G, a ∈ S,

gGag
−1 = Gga

Consequently, if a, b ∈ S are in the same orbit, their isotropy groups are conjugate. Also, all
subgroups conjugate to an isotropy group are isotropy groups.

Proof. First we show that gGag
−1 = Gga.

x ∈ gGag
−1 ⇐⇒ g−1xg ∈ Ga ⇐⇒ g−1xga = a⇐⇒ xga = ga⇐⇒ x ∈ Gga

If a, b ∈ S are in the same orbit, then b = ga for some g ∈ G. Then by the above,
Gb = Gga = gGag

−1 so Gb and Ga are conjugate. Finally, if H is conjugate to Ga, then by
the above, H = Gga for some g ∈ G so all conjugate subgroups to Ga are isotropy groups.

Proposition 0.19 (Exercise 15). Let G be a finite group acting on a finite set S with |S| ≥ 2,
such that there is only one orbit. Then there exists x ∈ G which has no fixed point (xa 6= a
for all a ∈ S).

Proof. Let a ∈ S. The orbit of a is all of S, so the order of Ga is |G|/|S|. This is strictly
less than G, as |S| ≥ 2. Thus Ga is a proper subgroup of G. By the previous lemma, the
conjugates of Ga are all isotropy subgroups. Then by exercise 16, the union of all isotropy
subgroups is not equal to G. Hence there exists x ∈ G such that x 6∈ Ga for any a ∈ S, that
is, xa 6= a for all a ∈ S.

Proposition 0.20 (Exercise 16). Let H be a proper subgroup of a finite group G. Then G
is not the union of all the conjugates of H.
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Proof. We know thatNG(H), the normalizer ofH inG containsH, andNG(H) is a subgroup,
so [G : NG(H)] ≤ [G : H]. Let KH be the set of conjugate subgroups to H, that is,

KH = {gHg−1 : g ∈ G}

We define a group action of G on KH by conjugation, that is, x · (gHg−1) = xgHg−1x−1 =
xgH(xg)−1. The stabilizer of H under this action is NG(H). By Proposition 5.2 from Lang,
|KH | = [G : NG(H)].

Each conjugate of H is isomorphic to H, so it has the same size as H, and it also contains
the identity element. So the maximum number of non-overlapping elements in each conjugate
subgroup to H is |H| − 1. As we showed, there are |KH | ≤ [G : H] such subgroups.

#

(⋃
g∈G

gHg−1

)
≤ (|H| − 1)[G : NG(H)] + 1

≤ (|H| − 1)[G : H] + 1

= |H|[G : H]− [G : H] + 1

= |G| − [G : H] + 1

(The +1 accounts for the identity.) Because H is a proper subgroup, [G : H] ≥ 2. Thus this
union has at most |G| − 1 elements, so it is not all of G.

Proposition 0.21 (Exercise 19a). Let G be a finite group acting on a finite set S. Then for
s ∈ S, ∑

t∈G.s

1

|G.t|
= 1

Proof. As t ∈ G.s, we have G.t = G.s. Thus |G.t| = |G.s| so∑
t∈G.s

1

|G.t|
=
∑
t∈G.s

1

|G.s|
= |G.s| 1

|G.s|
= 1

Proposition 0.22 (Exercise 19b). Let G be a finite group acting on a finite set S. For each
x ∈ G define f(x) to be the number of elements s ∈ S such that xs = s. Then the number
of orbits of G in S is equal to

1

|G|
∑
x∈G

f(x)

Proof. First, we note that
∑

x∈G f(x) is equal to the number of ordered pairs (x, s) ∈ G×S
such that xs = s. Similarly,

∑
s∈S |Gs| also counts the number of ordered pairs (x, s) where

xs = s, so these two sums are equal.∑
x∈G

f(x) =
∑
s∈S

|Gs|

7



By the Orbit-Stabilizer Theorem (Proposition 5.1 in Lang), |Gs| = |G|/|G.s| so

1

|G|
∑
x∈G

f(x) =
1

|G|
∑
s∈S

|Gs| =
1

|G|
∑
s∈S

|G|
|G.s|

=
∑
s∈S

1

|G.s|

We can write S as the disjoint union of the orbits,

S =
⊔
t∈S′

G.t

where S ′ is a set consisting of one representative from each orbit. Now we can rewrite our
final sum as ∑

s∈S

1

|G.s|
=
∑
G.t⊂S

∑
s∈G.t

1

|G.s|
=
∑
G.t⊂S

1

So we have

1

|G|
∑
x∈G

f(x) =
∑
G.t⊂S

1

The sum on the right is exactly the number of orbits of G in S, so this is the equality we
wanted to show.
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